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The CINT Vision & Mission

Establishing the fundamental principles that underpin the integration of nanomaterials is 
of paramount importance to nanoscience and ultimately nanotechnology. 

One scientific community focused on nanoscience integration 

3

Combining diverse nanomaterials across length scales 
to design and achieve new properties and functionality.

The science of nanomaterials integration:The science of nanomaterials integration:

Integration is key to exploiting nanomaterials
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Science Thrusts: The Foundation of Our 
Science and User Programs
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Flexibility of Thin Films: Architectures 
and Functionalities

ØSingle crystals
ü Intrinsic properties
▬ Control, size, and availability

ØCeramics
ü Easy process
▬ Grain boundaries & impurities

ØThin films
ü Artificial architectures and microstructures
ü Controlled dimensionalities
ü Growth at far-from or near equilibrium conditions

•Metastable phases
• Lattice strain
• Anisotropy

▬ Complexities

substrate



Advantages of Epitaxial Thin Films

as

af

Ø When the lattice mismatch is large, 
strain can be partially relaxed through 
misfit dislocations.

Ø When the lattice mismatch is small, the 
film can be strained.
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Ø Single-crystal not available
Ø Grainboundary in 

polycrystalline films
Ø Locking-in the crystal 

structure, and so the phases
Ø Induced preferential 

orientation
Ø Well controlled properties



Different Techniques Available
for Growth of Thin Films

?Physical vapor deposition (PVD)
ØSputtering, e-beam evaporation, molecular beam 

epitaxy, pulsed laser deposition
?Chemical vapor deposition (CVD)

ØPlasma-enhanced CVD, low pressure CVD, metal-
organic CVD

?Chemical solution deposition (CSD)
ØSol-gel, metal-organic decomposition (MOD)



PVD – A Powerful Technique to Synthesize Films 
over Multiple Length Scales

Nat. Mater. 7, 314 (2008). Adv. Mater. 21, 3794 (2009).



CSD – Low Cost, Easy Setup, and Coating on 
Irregular Surfaces

ØSpin-coating
ØDip-coating
ØPrinting
ØPainting



Flow Chart of Typical Chemical Solution 
Deposition Process

Precursors, solvent,…

Solution

Apply coatingDip coating

Spin coating

Spray coating

Formation of gel film

Heat treatment in controlled environment

Solvent removal/crystallization

Multi-coating possible

Thick film



Chemical Solution Deposition:
Sol-Gel Process
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PAD: Polymer-Assisted Deposition

?A chemical solution technique to deposit films – by mixing 
metal salts with water-soluble polymers

?Critical roles of polymers
ØThe polymer effectively binds the metal ions

cto stabilize the metal ions from hydrolysis in water
cto control the solution stability, reactivity, and processibility
cto enable filtration for the growth of high quality epitaxial complex 

materials

?Advantages
ØBy binding metal ions to a polymer that has regular ligand 

sites, thin films can be deposited in a homogeneous manner.



Schematic Illustration of Metals as Simple Salts 
or Complexes Bound to Polymers
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PAD Process



Filtration Critical for Growth of Epitaxial 
Complex Films 

Chem. Soc. Rev. 43, 2141 (2014).



Elements Coordinated with Polymers to 
Form Stable Precursor Solutions

Chem. Soc. Rev. 42, 439 (2013).



High Quality Epitaxial Simple Metal-oxide Films as 
Evidenced by the Dense Film and Sharp Interface

? High crystallinity Eu2O3 film 
on LaAlO3

? Sharp interface between the 
substrate and the film

? No voids

Eu2O3

LaAlO3

Appl. Phys. Lett. 85, 3426 (2004).



Lattice Parameters of Ba1-xSrxTiO3 as A 
Function of Ba/Sr Ratios

Appl. Phys. Lett. 85, 5007 (2004).



Dielectric Properties of Ba1-xSrxTiO3 Films as A 
Function of Ba/Sr Ratios
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Filtration Critical for Growth of Epitaxial 
Complex Metal Oxide Films
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Chem. Soc. Rev. 43, 2141 (2014).
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Filtration Critical for Growth of Epitaxial 
Complex Metal Oxide Films

Chem. Soc. Rev. 43, 2141 (2014).



BaTiO3 Films Deposited on
Polycrystalline Ni Substrates 

J. Mater. Chem. C 2, 708 (2014).

Polarization of a BaTiO3 film as a function 
of the electric field at room temperature

Typical XRD q–2q patterns of as-grown 
BaTiO3 film on polycrystalline Ni

Ni: 0.5 mm
BTO: 500 nm



Epitaxial Growth of La0.7Sr0.3MnO3/LaCoO3 
on SrTiO3 by PAD

By F. Rivadulla, Universidad de Santiago de Compostela, Spain



La0.7Sr0.3MnO3
18 nm

By F. Rivadulla, Universidad de Santiago de Compostela, Spain

Uniform Deposition of Epitaxial Complex Metal 
Oxide Films by PAD
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Epitaxial MoN Films on c-cut Sapphire 
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Sharp Interface between the Substrate and 
the MoN Film

J. Am. Chem. Soc.
133, 20735 (2011).



MoN and Mo2N Films with Different 
Superconducting Properties as Expected
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Well Controlled Interface between the 
Epitaxial BaZrN2 Film and the Substrate

The lattice misfit: 4.25 % 

Dislocation spacing ~ 9.5nm

23 aBZN to 24 aSTO

BaZrN2: a = 4.08 Å
SrTiO3: a = 3.901 Å 

Angew. Chemie. Int. Ed. 121, 1518 (2009).



Very Large Residual Resistivity Ratio of 
High Quality BaZrN2 Films

Residual resistivity ratio 

RRR = r300K/r5K = 396

r (T) = r0 + ATm
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Different conduction mechanisms
Ø electron-electron scattering (5-80 K)
Ø electron-phonon scattering (80-155 K)
Ø disordered localized magnetic moment 
(160-300 K)
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Heteroepitaxial Simple
Metal-Carbide Film by PAD

J. Am. Chem. Soc. 132, 2516 (2010).



Desired Mechanical Properties of TiC Films
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Young’s modulus: 440 - 396 GPa (bulk 450 GPa)

Hardness: 19.53 - 22.93 GPa



High Quality NbC Film with a Superconducting 
Transition Temperature of 10 K
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Chem. Commun. 46, 7837 (2010).



Outline
? Introduction
? Experimental details and results

ØMetal-oxide films
ØMetal-nitride films
ØMetal-carbide films
ØOther coatings

? Summary



Epitaxial Nanocomposite Films with Inclusion 
of Amorphous Nanoparticles

2 nm

SiO2

SrTiO3

Vertical:
hetero-epitaxial growth

Lateral:
homo- epitaxial growth

Angew. Chemie. Int. Ed. 47, 5768 (2008).



Porous Epitaxial Films by Etching off
SiO2 Nanoparticles

As-deposited composite

HF or NaOH remove SiO2

After etching off SiO2



PAD Application: Coating Phosphors on 
Nanostructures for Improved Light Output

366 nm UV excitation

standard Hg lamp (excitation 300 nm)



PAD Application: Synthesis of Eu:YVO4
Nanoparticle Networks

Nanoparticle networks without aggregation

500 °C 700 °C600 °C 800 °C

366 nm UV excitation



PAD Application: Coating Inverse Opals to Achieve
a New Class of Scintillating Materials

Hf coated inverse 
opals photographed 
in room light excited 
with a UV lamp.

Apply PAD 
solution

Heat at 
450 °C



Outline
? Introduction
? Experimental details and results

ØMetal-oxide films
ØMetal-nitride films
ØMetal-carbide films
ØOther coatings

? Summary



Challenges

?Thick (> 1µm) films

?Ultra thin (< 10 nm) films

?Temperature used to de-polymerize the polymers

?Carbon related issues



Summary

ØPAD is a new and powerful coating technique to 
synthesize electronic materials with desired structural 
and physical properties.

ØPAD has no limit to size and shape of objects coated and 
has broad applications in different fields.


